6x^2+x+12=0

Simple and best practice solution for 6x^2+x+12=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x^2+x+12=0 equation:


Simplifying
6x2 + x + 12 = 0

Reorder the terms:
12 + x + 6x2 = 0

Solving
12 + x + 6x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
6 the coefficient of the squared term: 

Divide each side by '6'.
2 + 0.1666666667x + x2 = 0

Move the constant term to the right:

Add '-2' to each side of the equation.
2 + 0.1666666667x + -2 + x2 = 0 + -2

Reorder the terms:
2 + -2 + 0.1666666667x + x2 = 0 + -2

Combine like terms: 2 + -2 = 0
0 + 0.1666666667x + x2 = 0 + -2
0.1666666667x + x2 = 0 + -2

Combine like terms: 0 + -2 = -2
0.1666666667x + x2 = -2

The x term is x.  Take half its coefficient (0.5).
Square it (0.25) and add it to both sides.

Add '0.25' to each side of the equation.
0.1666666667x + 0.25 + x2 = -2 + 0.25

Reorder the terms:
0.25 + 0.1666666667x + x2 = -2 + 0.25

Combine like terms: -2 + 0.25 = -1.75
0.25 + 0.1666666667x + x2 = -1.75

Factor a perfect square on the left side:
(x + 0.5)(x + 0.5) = -1.75

Can't calculate square root of the right side.

The solution to this equation could not be determined.

See similar equations:

| 12x-24=-14x+25 | | 10=9b+82 | | (4z+7)+(8z-6)=25 | | -2(m+8)=-16 | | 2x^2+10x-1=0 | | 8x-10x=30 | | 6-8x=2x+20 | | 28=2s-18 | | 6a*12=2a | | 28-2s=18 | | 9(5z+2)-7(8z)=-15 | | 6a/12=2a | | x+x^2=56 | | .3x-15=.2x-5 | | -20n^2+2000x+48000= | | (5x-9)(5x-9)-(3x-2)(3x-2)=(7-4x)(7-4x)-(7+4x)(7+4x)-8x(4-2x)+6(x+13) | | 8y+4y+7y=57 | | 4a+3=7a | | 0=-16t^2+64t+90 | | 2a-1=3a | | 17=2X+13 | | 8x^2+4-12x=0 | | 5x^2-19x^2-4=0 | | 224-6x=39x+24 | | 5z+7(9z-3)=115 | | 18+6x=420 | | -3z=5-8 | | 7-9x=109-30x | | 5x-9=7x+8 | | 3x^3+19x^2-72x=0 | | 7y-2=8y-2y | | 7n(7n+2)=8 |

Equations solver categories